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1. Introduction

It is our purpose here to show that two prototype models of
complementary pivot and fixed point theory and the correspouding path
following solution methods are conceptually equivalent. First, we have

the linear complementarity problem

(LCP) Mz + Nw = q

where M and N are nxn, q is n x 1, and the variazbles 2z and

w are n x 1. Second, we have the plecewise linear system
(PLS) f(x) =y

where f:R" +R" is piecewise linear (PL). One attempts to solve

LCP by following paths of solutions to the parameterized problem

LCP(8) Mz + Nw = Q(8)

z>0 w>0 zw=0

where Q : R+ > R? is linear and R+ = [0, + =), this procedure is

known as Lemke's algorithm [5].




Y

One attempts to solve PLS by following paths of solutions to

the parameterized problem
PLS(0) f(x) = Y(9)

where Y : R~ R"® is linear, see [4].

By converting an LCP to a PLS and vice-versa we shall
demonstrate that paths following in one is conceptually equivalent
to paths following in the other.

The conversion from LCP to PLS was introduced in {4] and is
elementary. The conversion from PLS to LCP is the contribution of
this paper and is comparatively complicated. It was shown in
Lemke [6] that the primitive set schema of Scarf [10] could be
posed as an LCP. Although we shall not pursue the matter here,
the refining grid homotopy algorithms of [2, 3] and the restart -
algorithms of Merrill [8], assuming finite subdivisions, can also

be shown equivaient to paths following in the LCP and PLS.
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2. Cells, Subdivisions, PL Maps

The remarks of this section are preliminary to the main
development. By a cell we mean a closed polyhedral convex set o,
namely, a set of form ¢ = {x : Ax < a}. By an n-cell we mean a
cell of dimension n. By a vertex, an edge, and a facet of a cell
we mean faces of the cell of dimension 0, 1, and n-1l, respectively.
Two cells o and T are defined to be isomorphic if there is a
linear map h : 0 + vt that is one-to-one and onto. In this case,
in particular, dim ¢ = dim t and 1 1s unbounded if and only if ¢
is. A cell is called pointed if it has a vertex.

A pointed cell o can be expressed in the form
{vA +uy : ex=1, A >0, vy > 0}

where v = (vl, ceey vz) in Rpxl is an ordering of the vertices
v, of g, p= {pl, cens pk} is an ordering of the unbounded edges
Py of o, u = (ul, ceey uk) in Rnxk has columns u, which are

]
the (nonzero) directions (of recession) of the unbounded edges pj
k
of 0, A= (Al, cees Al) € Rz. Y= (Yl, vees kk) e R, and
e=(1, ..., 1) € Rz. See Figure 1. For a given x in o there may

be many pairs (A, v) > 0 with x = vi + uy and el = 1,




Figure 1

Let £ : o » R® be linear and defined by £(x) = Hx + h.
Then for any x = vA + uy with eA =1, A >0, and y > 0 we have
f(x) = VA + Uy where V = (f(vl), eonsy f(vz) and U = (Hul, cees Huk).
By a subdivision .# of a cell ¢ we mean a finite collection of
cells Tt contained in ¢ such that
1) the cells of # cover o,
2) faces of cells of «# are in
3) any two cells of .# are disjoint or meet in a common face.
See Figure 2. The empty set is not regarded as a face of a cell and

we do not include the empty set in a subdivision.
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Figure 2

Given two subdivisions .4 and ¥ of ¢ we say that ¢ is a

refinement of 4 1if for each T in ¥ there is a p in #H with

T Co.

Let Nys coes n, be a finite collection of hyperplanes in R".

For all p = (pl, cees pt) with Py in {+, -} define the cells

npi
1
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where nz and n; are the two closed halfspaces of Rn defined by
the hyperplane n T Let 4 be the finite collection of n-cells of
form rp. By extending .4 to include the faces of cells we obtain a
subdivision of R" and we define a subdivision of this form to be one
based on hyperplanes. By adjoining more hyperplanes to the list we
obtain a subdivision which refines the former, and in particular, by
adjoining the hyperplanes {x : x, = 0} we obtain a refinement in which

each cell is pointed.

2.1 Lemma: Let ./ be a subdivision of a cell. 1If one cell of .#

is pointed, then all cells of ./ are pointed. B

2.2 Lemma: Let .# be a subidvision of Rn, then there is a

subdivision ¥ of R" based on hyperplanes which is a refinement of .#.

Proof: Let Yy be any facet of a cell oy of M and let ny
be the unique hyperplane containing v i The subdivision .4 based on

the n, is a refinement of .#. B

Let o beacell and f : 0 » R be a function. If for some
subdivisions ¥ of o, f 1s affine on each cell of ¥, then we say
that f 1is PL, or more precisely, that it is PL with respect to #.
Clearly, if f 4is PL with respect to ¥, and . is a refinement of ¥,

then f 1s PL with respect to .#.
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By a vertex, unbounded edge, or direction of an unbounded edge
of a subdivision .4 we mean such with respect to any cell of the
subdivision. Let us assume that each cell of ¥ is pointed. Let
v = (vl, ey vz) in R“x" and p = (pl, cees pk) be an ordering

of all vertices and unbounded edges of .4 . Let u = (ul, cesy uk)

in Rnxk where u, 1is the direction of PR Let (X, y) be an

b
element of R9”+k with (A, y) >0 and eX = 1. Let Tt be a cell of

_¥: the pair (), y) 1is defined to be Tt-admissible if A > 0 implies

i

v, 1is a vertex of T, and Yj > 0 1implies that pj is an unbounded edge

i
of t. In this case x = vA +uy is in 1. The pair (X, y) 1is defined

to be admissible if (A, v) is t-admissible for some <.

2.3 Lemma: For x in Rn, there is an admissible pair (X, y)

with x = vA + uy. 73}

By a path X 1in R® we mean a PL map X : R+ >R A path

(A, T) in R¥™ s defined to be admissible if (A(8), T(8)) is

admissible for each 8 in R+.

2.4 Llemma: If X 1is a path in Rn, then there is an admissible

path (A, T) 1in R‘Hk with X = vA + ul.

Proof: Let the O-cells of the subdivision of R+ be

0= tl, ooy th Let Sys cees sg be those GER+ such that X (8)




enters a cell of ¥, that is, X(si) €1 but x(ts -¢€) ¢ 1 for all
sufficiently small positive e. Let L 0 < ry < ovee < T be an
increasing sequence with {ro, vees rm} = {tl, cees th} ) {sl, cees sg}

and let rml.rm+l' See Figure 3. For each rp p=0, ..., m+1

let ‘l’p be the smallest cell of .4 containing X(rp) and select

(lp, yp) tp-admissible with X(rp) =wP + qu. For p=0, ..., m-1

define (A(8), I'(8)) = (L +p - 8)(AP, yP) + (8 - p) OGP, yP*y  for
p<o<p+1l. For 6>m let (A(8), T(®)) = (L+m=-08)Q", y)

m+l

+ (8 - m) ()\m+1, Yy ). (A, T) is an admissible path and X = v A + ul.d

/s
\ X(R,) e
t]),’ + 7

Figure 3

Let £ : R® + R" be PL with respect to #. Let

Vs (£(v)), ..ns £(v)) 1n R and U - (hy, «oy B dn Rk

where 1if p.‘l lies in cell ¢ of F and f(x) =Hx + h for x in o,

then h:1 = Huj.

a




2.5 Lemma: If x = vA + uy where (A, y) 1s admissible,

then £(x) = VA + Uy. &

In Section 4 the theory is developed which enables us to state

"admissibility'" as a "complementary condition".

A
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3. LCP to PLS

Since the transformation from an LCP to a PLS lends itself to
a brief description we shall recount this conversion for completeness.
In addition, this conversion gives the reader a paradigm for the PLS

to LCP conversion which is considerably more involved.

Consider the LCP for (2, w) >0 with 2z - w=0 let x =12z - w.

n + + + - - -
For x in R let x = (xl, ooy xn) and x = (xl, ceay xn) where

xf =x, if x, >0 and x, = - x if x, < 0. Define h : R" » "
i i i-— i i i-

by
h(x) = Mx+ + Nx_

and it is clear that h 1is linear on each orthant of R" and, hence,

is PL. Note that this subdivision is based on the hyperplanes

{x:x
3

are weights; that is, Yj's, on directions, + e of unbounded edges.

= 0} and that each cell is pointed. Furthermore the x;- and

-

B
3.1 Theorem: If (z, w) solves LCP, then x = z - w solves

the PLS h(x) = q. If x solves the PLS h(x) = q, then (z, w) solves

LCP where z -w=x and z - w= 0. 3|
Recall that a path is a PL map on R+. By the statement

"(X, © 1is a path solving f(x) = Y(8)", we mean that £(X(t)) = Y(©O(t))

for all t 1in R+.

10
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3.2 Theorem: If (2, W, & 1is a path solving LCP(8), then
(X, 8 with X =2Z - W 1is a path solving the PLS(6) h(x) = Q(8).
If (X, ) 1s a path solving the PLS(8) h(x) = Q(8), then (Z, W, )

is a path solving LCP(8) where (Z, W) is defined by X =2 - W

and 2 + W= 0. ®
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4. PL Convex Maps, Conjugates, and Duality

In this section we develop a duality relationship between the
epigraphs of conjugate PL convex functions. This device is central
to our conversion of PLS to LCP in the next section.

Let g : R" -~ Rl be a convex function that is PL with respect
to the subdivision .# of R®. Let G be the epigraph

1

{(x, t) e R°L g(x) <t} of g. Clearly G is an (mtl)-cell.

Let ¥ be the set of proper faces of G, that is, nonempty faces
other than G itself. If the cells of ¥ are projected to R® then
one obtains a subdivision  of R" and ¥ is a refinement of .#.
Define % : A > € by (1) = {(x, g(x)) : x € t}. We say that
is inclusion preserving 1f ¢ C 1t in .4 and ¢(0) Cy¢(1) in ¥ are

equivalent.

4.1 Lemma: ¢ : A4+ & 1is one-to-one, onto, inclusion pre-
serving, and ¢ and (o) are isomorphic for all ¢ in . &

1

*
Let g : R®+R U {+ ®} be the conjugate, see Rockafellar [9]

of g, namely,

s*(y) = sup(y-x - g(x)) .

* *
The effective domain D = {x : g (x) <+ »} 4s bounded and g : D+ R1

*
is a convex PL function. Let G be the epigraph {(x, t)e Rn+l :

* * * *
g (x) <t} of g and let @ be the set of proper faces of G .

12
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We define two maps wl and wz that carry elements of ¥
*
to elements of % , see Figures 4 and 5. By 23g(x) we mean

the set of subgradient of g at x, see [9].

Let T be an element of ¥ . Note that if (z, g(z)) and
(w, g(w)) are any two points in the relative interior of t we have

3g(z) = 3g(w). Further

ag(z) = n ag(x) .
(x,g(x))er

*
We define wl T 9> % by

(D = {5, 870 ¢ v € 2@}

where (z, g(z)) 1is any point in the relative interior of T.
*
Recall v € 3g(z), if and only if 2z € 3g (y). Thus, we have

4

$, (0 = Uy, 87 ¢ z €3’y

*
or that wl(‘r) is the face of G corresponding to the supporting
hyperplanes of g at =z, therefore, wl is well-defined. We call wl

*
inclusion reversing if ¢ Ct in ¥ and ¥,(0) _D_xhl('r) in

* *
are equivalent. Let ¥ b be the collection of bounded cells in ¥ .

The next two theorems are closely related to the notion of dual cells.

%
4.2 Theorem: wl 1 € + € b is one-to-one, onto, inclusion

reversing, and dim wl(a) = n-dim ¢ for all cells ¢ in @¥.




—

Proof: That wl(t) is bounded follows from the boundedness
of D. If 7, and '1'2 are distinct faces of G, then
ag(zl) ¥ ag(zz) for (zi, g(zi)) €riTy and we have that
*
wl(‘rl) ¢ wl(rz). If o 18 a bounded proper face of G , then for
* * *
some x we have o= {(y, g (y)) : xe€3g (y)}={(y, g (y)) :
y € 3g(x)} = ¥1(t) where Tt is the smallest face of ¥ containing
x. If T 2 T, in @ , then 33(:1) C Bg(zz) where (zi, s(zi)) eri 1,
80 wl(rl) < wz(tz). Finally, dim 3g(x) = n - dim t for (x, g(x)) in

the relative interior of T.

Now let us assume, in addition, that the level sets
*
{x : g(x) <t} of g are bounded; then G 1is an (n+l)-cell. Let
% *
Qu and Qu be the set of unbounded cells of € and ¥ , respectively.

: g* v
Define "’2 : gu* L
vy(t) = v, (1) + (0, R)
*
wz carries unbounded cells of G to "vertical” cells of G .

*
4.3 Theorem: wz : gu -> Qu is one-to-one, onto, inclusion

reversing, and dim wz(a) s=n+1-dimoc for all cells ¢ of gu.

4.4 Lemma: For Tt in gu; ¢2(1’) 2 wl('r). For t in Qu and .
o in G, ¥,(1) 2¥,(0) implies y,(t) 2y,(s). For 1 and o in
G, ¥ (7) 2 ¥,(0) implies ¥,(1) 2 NGB ;'




M e

Let vy i=1, ..., & be the vertices of ¥ and p_1

j=1, ..., k be the unbounded edges of ¥ . Let o C (1, ..., ¢}

and 8 C {1, ..., k}.

*
4.5 Corollary: The facets of G are wl(vl), ceey wl(vz),

wz(pl), cens wz(pk). Furthermore, vertices v, 1 € « and edges

°j j € B 1lie in the same proper face r of G 1if and only if all

their correaponding facets wl(vi) i ea and wz(p j) j €8 meet in

*
the face wl(r) of G .

Proof: v, €t if and only if ¢;(v,) 2¥,(1). o, St if and

only if ¥,(p ) 2 ¥, (7).
G
P2
1
Vl T V2
Figure 4a
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wl(pz)

LCPY
¥, (0
Figure 4b
v
gu ¢ 2 ; gu
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¥y *
¥ > %
lﬂl
N
Figure 5
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5. PLS to LCP

Consider the PLS. We can assume without loss of generality
that £ 1is PL with respect to a subdivision .# that is based on
the hyperplanes Nys sees N and that each cell is pointed.

Let v = (vl, ceey vz) in Rnx!', p = (pl, ceey pk), and
u = (ul, cees uk) in Rnxk be an ordering of all vertices of _#¢,
all unbounded edges of .#, and all directions u_1 of the unbounded

2+k

edges o Let (A, Y) be in R .

j.

The crux of our conversion from PLS to LCP is to comstruct a
cell E such that (A, v) > 0 with ei = 1 is admissible if and
only if s » (A, Y) = 0 for some s in E.

For 1 =1, ..., m define the "vee" maps gy ¢ R+ Rl by

g (x) = Iaix - bi[

where n1 = {x : ax = bi}‘ Then g 2= :_1 gi is a PL convex map.
Let G be the epigraph of g and % be the collection of proper
faces of G. As before Yy : A4+ & where (1) = {(x, g(x)) : x & T}
is one-to-one, onto, inclusion preserving, and o and y(o) are
isomorphic for all ¢ 4in .#. In particular, there is a one-to-one
correspondence between the vertices and unbounded edges
(v, p) = (vl, cees Vos Py cees pk) of .# and thogse (y(v), v(p))
o CTC P PR 10 2 TR TCTS FRPPIIE TCH DI SR

Since all cells of .# are pointed the level sets of g are

* *
bounded and the epigraph G of g , the conjugate of g, is an




* *
(n+l)-cell. Define wl 1 6+¢ b and wz ‘g, @u as in
*
Section 4. From corollary 4.5 we see that G has 2 + k facets, one
corresponding to each element of (Y(v), ¢(p), or equivalently, (v, p).
*
Thus, G can be written as the intersection of the k + 2

halfspaces corresponding to its facets. 1In particular, we can express

* 1

G as {t e R . AL + Is = a, s > 0} where the slacks s = (sl, sz)
= (si, cees si, si, cors si) of the facets are ordered to correspond
to (v, p) = (vl, coes Yoy Prs enes pk).

Since G* is pointed, A has rank n + 1. Thus, there are
matrices (B, b) and (C, ¢) such that (&, s) solves Af + Is = a
with s > 0 if and only if (£, s) solves £ = Bs + b, Cs = ¢, and
8 > 0. Furthermore C can be chosen to be (k+ & ~n-1) x (k + %)
and of rank r+ 2 -n~1. Theset E= {8 >0 : Cs =c} is the

target of our effort as the next lemma shows.

We define the system * to be

Cs = ¢ e =1
(A:sz)io (A.Y)'S-o
5.1 Lemma: (A, y) 1is admissible if and only if (A, vy, 8)
solves * for some s. If (A, v) 18 o-admissible and £ 1is in

¥y V(o) then (A, v) * s = 0 where s = a - AE.

Proof: Suppose (A, y) is o-admissible. Then the facets

wlw(vi) and 020(93) corresponding to Ai >0 and Yy > 0 meet

18
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at the face wlw(c). Select £ e wlw(a) and let s = a - Af. Then
si = (0 for Ai >0 and sj =0 for Yj = 0, since £ 1s in the
facets WIW(vi) and wzw(pj) for Ai >0 and Yj > 0. Suppose
(A, Y, 8) solves *. Let £ = Bs + b. Then the facets of G*
corresponding to s, = 0 contain £ and, hence, they contain the
smallest face T of G containing z. Thus, wlw(vi) 21T and
¢2¢(pj).2 T for Ay >0 and vy ? 0, respectively. Since A # O,
T 1is bounded. Therefore, wlw(pj) 2 T according to lemma 4.4.

Thus, v, and py are in the cell w-lwzl(t) for A, > 0 and

3]

Yj > 0. Finally, x = vA + uy lies in the cell w_lwzl(t).

Let V= (f(vl), cees f(vz) and U = (hl’ cees hk) where
if Py lies in cell ¢ of # and f(x) =Hx+ h for x in ¢
then h, = Hu,.

] ]
Now we define LCP, to be the LCP

(Lce,) © ou(})+Ns =g

(A,Y,S)io (A;Y)'S.O

vhere (M, N, q) =

< O
[~ o
(=] (o]
< n

o

o
o
[

a 18 acompositeof VA + Uy = y and the system *.

-




5.2 Theorem: If (A, v, s) solves LCP,, then x = vi + uy
solves PLS. If x solves PLS then * has a solution (A, v, 8)

with x = vA + uy and any such (A, v, s8) solves LCP,.

Proof: Since (A, y) is admissible, f(x) = VA + Uy =y and
x solves the PLS. If x solves the PLS, then x is in some cell
T of A#. So x = vA + uy where (A, vy) is rt-admissible and
f(x) = VA + Uy = y. Select £ in the cell wl(w(r)) and let

8 = a - Af., Then according to lemma 5.1 (A, y, 8) solves *, &

Let LCP,(6) be the system LCP, with y replaced by Y(8).

In the theorem below (A, I, S) : R, » R2'+k+(9'+k)

" and Q:R++R+.

Q 1is defined to be monotone and onto if s < t implies Q(s8) < Q(t)

and Q(R_._) = R+. ! enters in the next theorem because the progress of
(X, & must be stopped periodically in order to update the complementary
variable S corresponding to the sub'&ivision. Heuristically, we
alternate between a pivot corresponding to the function and a pivot
corresponding to the subdivision (or in the language of Todd [11]

between ''primoid" and "duoid" exchanges). Recall, with a statement
like "(X, @ soives f(x) = Y(8)" we mean that f£(X(t)) = Y(@(t))

for all t/'fl;n R+.

5.3 Theorem: If (A, T, S, @) 1is a path solving LCP,(6)
then (X, 8) solves PLS(6) where X=v A+ ul. If (X,0) is a
path solving PLS(8) then there is a path (A, I, S) and a
monotone onto path Q such that (A, T, S,600) solves LCP, (8)

and XQ =vA + ul.




Proof: Since (A, ') is admissible f£f(X) = VA + Ul = Y6,
see lemma 2.5. Now let (X,0) be a path solving PLS(6). Let
(A, ') be an admissible path with v A + ul' = X, see lemma 2.4.
Let o-eo<el< see <eh<eh+l=+w be a sequence in R+ and
9 # 9 $oove ¢ o, a sequence in ¥ such that (A, T)(9) is

o,-admissible for 8, < 6 < 61 + 1. Define Q : R+ - R+ by

i i
2i+1 1
(21i+ -e)ei+ €] -21)61_,_1
for 24 < 6 < 2i+l1 i=0,1, 2, ..., b -1
Q) =
) for 21+l < 0 < 2i+2 i=0,1, 2, ..., h -1

8, +8 -2h for 8 > 2h

See Figure 6. Let §S(2i) = a - Az for some 2z 1in wlw(ci) for
1i=0,1, ..., h. Let 8(8) = 8S(21) for 2i <8 <2i+1 for
i=0,1, ..., h-1 and & > 2h. Thus, according to lemma 5.1

we have (A, T)(@) « S(2i) = 0 for o, <6 <@ and

i i+1
1=0, ..., by, or (A, [)R(8) - S(8) =0 for 21 26 <2i+1 for
1=~0,1, ..., h-1 and 6 > 2h. Let S(6) = (21 + 2 -~ 9)S(21 + 1)
+ (0 -24 -1)S(24 +2) for 21 +1 <0 < 21 +2 for

i=0, ..., h=-1., Since the cells oy and %441

are contained in ¢ pr. Thus, BS(8) + b

meet in a common

face T, wltlmi and Y% 349

is in ¥ 41 for 24 +1 <6 < 2i + 2. Since (A, r)(eiﬂ) is

t-admissible we have (A, T)(8, .) « S(8) =0 for 21 +1 <9 <21+ 2

1+1
for 1 =0, ..., h=1. Or (A, 1)) « S(¢) = 0 for

e g e ol o




21 +1<06<2{+2 for 1 =0, ..., h - 1. See Figure 7. So
(A, )2 - S =0. Clearly vAQ +ull = X0 and £XQ = VAQ

+ UIrQ = Y6Q. Therefore, (AQ, TR, S,OR) is the required path.

Q
92 N
! ! . h =2
91 4 -
J |
o J
% 1 2 3 4 s
Figure 6
( A,I‘)Q’l
constant ,(A 1) (614-1)
(A,T) (91)
constant %141
S(21+2
D (2142)
ei
K—rs
S(2
(21) constant
[ 1
21 21i+1 2142
Figure 7




First, note that if we convert an LCP to a PLS, as in Section 3,
and then convert the resulting PLS into an LCP, as in Section 5,
we do not get back the original LCP. In particular, the dimension
has expanded enormously. The conversion from PLS to LCP is, most
likely, computationally useless, and consequently, perhaps, entirely
useless. This conversion should, it seems, be regarded with certain
suspicion; from a computational complexity perspective it is foolishness.
Nevertheless, it is quite curious that, in fact, the PLS can be restated
as an LCP in such a way that paths in PLS(®) transform to paths in
LCP(®).

Second and continuing in the main theme, Aganagic [1] observed
that RLCP can be stated on a convex PLS, namely, (CPLS) h(z) = 0 where

h: Rn + r® is convex and PL, and h is defined by

hi(z) = min (Miz + s zi) for i=1, ..., n

where Mi is the ith row of M. But we have shown that PLS with
f nonsingular somewhere can be restated as an RLCP. Thus, such a
PLS can be transformed to a CPLS.

Third, our development was somewhat encumbered because the
(A, Y) coordinate system did not have unique repregentation. Is

there some refinement of .4 that enjoys both unique representation

as well as the existence of a set E?




Finally, if the function h in Section 3 is nonsingular on
some orthant, then LCP can be transformed by simply rearranging the
variables and multiplying by an inverse to obtain a regular LCP,

RLCP, of the same size; that is, M and the identity I are n x n.

(RLCP) Iw - Mz = q

z>0 w>0 2z-w=0

In general if the map f of PLS is nonsingular on some n-cell o
where ¢ has no more than n + 1 vertices and unbounded edges, total,
and hence, exactly n + 1, then LCP, can also be so transformed to

an RLCP. Thus, if £ 4is nonsingular somewhere we can adjoin more
hyperplanes so that f is nonsingular on an n-simplex of .¥.
Therefore, if f is nonsingular somewhere the PLS can be restated as

an RLCP.
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